1. טרצ'יצקי, ח., אסולין, ש., נאור, ע., שנקר. מ., שוורץ, א. ואחרים. 2015. זיהוי גורמי הפגיעה והתנוונות במטעים המושקים בקולחים ונטועים בקרקעות חרסיתיות. דו"ח סופי לתכנית מחקר מספר 596-0460-14, משרד החקלאות.
2. Agam N., Segal E., Peeters A., Levi A.,
Dag A., Yermiyahu U., Ben-Gal A.
2014. Spatial Distribution of
Water Status in Irrigated Olive Orchards by Thermal Imaging. Precision
Agriculture, 15, 346–359.
3. Ben-Gal, A. and Shani, U. (2002) A highly
conductive drainage extension to control the lower boundary condition of
lysimeters. Plant and Soil, 239:9-17.
4. Blackburn, G.A. (2007) Hyperspectral
remote sensing of plant pigments. J. Exp. Bot. 58:855-67.
5. Dabach, S. Lazarovitch, N., Šimůnek, J.
and Shani U. (2013) Numerical investigation of irrigation scheduling based on
soil water status. Irrig. Sci. 31:27-36.
6. Dorais, M., Papadopoulus A. and Gosselin
A. (2001) Greenhouse tomato fruit quality. Hort Rev 26:239–319.
7. Ephrath, J.E., Silberbush M., Berliner
P.R. (1999) Calibration of minirhizotron readings against root length density
data obtained from soil cores. Plant and Soil 209:201-208.
8. Feinerman, E. and Tsur, Y. 2014.
Perennial crops under stochastic water supply. Agricultural Economics
45:757-766.
9. Herrmann, I., A., Karnieli, D.J. Bonfil,
Y. Cohen, V. Alchanatis (2010) SWIR-based spectral indices for assessing
nitrogen content in potato fields. Int J Remote Sens 31:5127–5143.
10. Ityel, E., Lazarovitch, N., Silberbush,
M. and Ben-Gal, A. (2012) An artificial capillary barrier to improve root-zone
conditions for horticultural crops: response of pepper plants to matric head
and irrigation water salinity. Agric. Water Manage. 105:13-20.
11. Lazarovitch, N., Ben-Gal, A. and Shani,
U. (2006) An automated rotating lysimeter system for greenhouse
evapotranspiration studies, Vadose Zone J., 5:801-804.
12. Leyva R., Constan-Aguilar C., Blasco B.,
Sanchez-Rodriguez E., Romero L., Sorianoa T., Ruizb J.M. (2013) Effects of
climatic control on tomato yield and nutritional quality in Mediterranean
screenhouse. J Sci Food Agric 94:63-70.
13. Mariotto, I., Thenkabail, P.S., Huete,
A., Slonecker, E.T. and Platonov A.(2013) Hyperspectral versus multispectral
crop-productivity modeling and type discrimination for the HyspIRI mission.
Remote Sens Environ 139:291–305.
14. Monteith, J.L. (1973) Principles of
environmental physics. Arnold,
London, p 291.
15. Morille B., Migeon, C., Bournet, P.E.
(2013) Is the Penman-Monteith model adapted to predict crop transpiration under
greenhouse conditions? Application to a New Guinea Impatiens crop. Sci Hortic
152:80-91.
16. Moshelion, M., Halperin, O., Wallach, R.,
Oren, R. and Way, D. (2014) The role of aquaporins in determining transpiration
and photosynthesis in water-stressed plants: crop water-use efficiency, growth
and yield. Plant. Cell Environ.
17. Naidu, R.A., Perry, E.M. Pierce, F.J. and
Mekuria, T. (2009) The potential of spectral reflectance technique for the
detection of Grapevine leafroll-associated virus-3 in two red-berried wine grape
cultivars. Comput Electron Agric 66:38-45.
18. Pirkner, M., Dicken, U., Tanny, J., 2014.
Penman–Monteith approaches for estimatingcrop evapotranspiration in
screenhouses—a case study with table grape. Int. J.Biometeorol. 58:725–737.
19. Sade, N., Gebremedhin, A. and Moshelion,
M. (2012) Risk-taking plants: Anisohydric behavior as a stress-resistance
trait. Plant Signal. Behav., 7:767–770.
20. Sade, N., Gebretsadik, M., Seligmann, R.,
Schwartz, A., Wallach, R. and Moshelion, M. (2010) The Role of Tobacco
Aquaporin1 in Improving Water Use Efficiency, Hydraulic Conductivity, and Yield
Production Under Salt Stress. Plant Physiol. 152:245-254.
21. Serrano, L., González-Flor, C. and
Gorchs, G. (2010) Assessing vineyard water status using the reflectance based
Water Index. Agric Ecosyst Environ 139:490-499.
22. Shenker, M., S. Seitelbach, S. Brand, A.
Haim, and M.I. Litaor. 2005. Redox reactions and phosphorus release
from re-flooded soils of an altered wetland.
Eur. J. Soil Sci. 56:515-525.
23. Šimůnek, J., M.Th. van Gencuhten, M. Šejna
(2008) Development and applications of the HYDRUS and STANMOD software packages
and related codes. Vadose Zone J., 7 (2008), 587–600.
24. Subbaiah, R. (2013) A review of models
for predicting soil water dynamics during trickle irrigation. Irrig Sci 31:225-258.
25. Yizhaq,
H., Sela, S., Svoray, T., Assouline, S. and Bel, G. (2014). Effects of
heterogeneous soil–water diffusivity on vegetation pattern formation. Water
Resour. Res., 50 5743–5758